Swimming in Curved Surfaces and Gauss Curvature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Gauss Curvature of Minimal Surfaces!?)

1. Summary of results. The following is known: let 5 be a minimal surface defined by z=f(x, y) over the region D:x2+y2<R2, and let p be the point of S over the origin. Let W= (1+fl+fl)112 at p. Then the Gauss curvature K at p satisfies \K\ Sc/R2W2. The best numerical value of c known previously was 12.25. This inequality is simultaneously sharpened and generalized. First of all, it is proved th...

متن کامل

Estimates in Surfaces with Positive Constant Gauss Curvature

We give optimal bounds of the height, curvature, area and volume of K-surfaces in R3 bounding a planar curve. The spherical caps are characterized as the unique K-surfaces achieving these bounds.

متن کامل

L_1 operator and Gauss map of quadric surfaces

The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...

متن کامل

An Estimate for the Gauss Curvature of Minimal Surfaces in R Whose Gauss Map Omits a Set of Hyperplanes

We give an estimate of the Gauss curvature for minimal surfaces in Rm whose Gauss map omits more than m(m + 1)/2 hyperplanes in P(C).

متن کامل

AN ESTIMATE FOR THE GAUSS CURVATURE OF MINIMAL SURFACES IN Rm WHOSE GAUSS MAP OMITS A SET OF HYPERPLANES

We give an estimate of the Gauss curvature for minimal surfaces in R m whose Gauss map omits more than m(m + 1)=2 hyperplanes in P m?1 (C).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Universitas Scientiarum

سال: 2018

ISSN: 2027-1352,0122-7483

DOI: 10.11144/javeriana.sc23-2.sics